Swinburne
Browse

Quenching and morphological transformation in semi-analytic models and CANDELS

Download (5.18 MB)
journal contribution
posted on 2024-08-06, 09:16 authored by R. Brennan, V. Pandya, R. S. Somerville, G. Barro, Edward TaylorEdward Taylor, S. Wuyts, E. F. Bell, A. Dekel, H. C. Ferguson, D. H. McIntosh, C. Papovich, J. Primack
We examine the spheroid growth and star formation quenching experienced by galaxies since z ∼ 3 by studying the evolution with redshift of the quiescent and spheroid-dominated fractions of galaxies from the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) and GAMA (Galaxy and Mass Assembly) surveys. We compare the observed fractions with predictions from a semi-analytic model which includes prescriptions for bulge growth and AGN feedback due to mergers and disc instabilities. We facilitate direct morphological comparison by converting our model bulge-to-total stellar mass ratios to Sérsic indices. We then subdivide our population into the four quadrants of the specific star formation rate–Sérsic index plane and study the build-up of each of these subpopulations. We find that the fraction of star-forming discs declines steadily, while the fraction of quiescent spheroids builds up over cosmic time. The fractions of star-forming spheroids and quiescent discs are both non-negligible, and stay nearly constant over the period we have studied. Our model is qualitatively successful at reproducing the evolution of the two ‘main’ populations (star-forming discs and quiescent spheroids), and approximately reproduces the relative fractions of all four types, but predicts a stronger decline in star-forming spheroids, and increase in quiescent discs, than is seen in the observations. A model with an additional channel for bulge growth via disc instabilities agrees better overall with the observations than a model in which bulges can grow only through mergers. We also examine the relative importance of these different physical drivers of transformation (major and minor mergers and disc instabilities).

Funding

National Aeronautics and Space Administration

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

451

Issue

3

Pagination

23 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC