Swinburne
Browse

RedMaGiC: Selecting luminous red galaxies from the DES Science Verification data

Download (3.24 MB)
journal contribution
posted on 2024-08-06, 10:24 authored by E. Rozo, E. S. Rykoff, A. Abate, C. Bonnett, M. Crocce, C. Davis, B. Hoyle, B. Leistedt, H. V. Peiris, R. H. Wechsler, T. Abbott, F. B. Abdalla, M. Banerji, A. H. Bauer, A. Benoit-Lévy, G. M. Bernstein, E. Bertin, D. Brooks, E. Buckley-Geer, D. L. Burke, D. Capozzi, A. Carnero Rosell, D. Carollo, M. Carrasco Kind, J. Carretero, F. J. Castander, M. J. Childress, C. E. Cunha, C. B. D'Andrea, T. Davis, D. L. DePoy, S. Desai, H. T. Diehl, J. P. Dietrich, P. Doel, T. F. Eifler, A. E. Evrard, A. Fausti Neto, B. Flaugher, P. Fosalba, J. Frieman, E. Gaztanaga, D. W. Gerdes, Karl GlazebrookKarl Glazebrook, D. Gruen, R. A. Gruendl, K. Honscheid, D. J. James, M. Jarvis, A. G. Kim, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. A G Maia, M. March, P. Martini, P. Melchior, C. J. Miller, R. Miquel, J. J. Mohr, R. C. Nichol, B. Nord, C. R. O'Neill, R. Ogando, A. A. Plazas, A. K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E C Swanson, J. Thaler, D. Thomas, S. Uddin, V. Vikram, A. R. Walker, W. Wester, Y. Zhang, L. N. da Costa
We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z ∈ [0.2, 0.8]. Our fiducial sample has a comoving space density of 10-3 (h-1 Mpc)-3, and a median photo-z bias (zspec - zphoto) and scatter (σz/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5σ outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.

Funding

Research England

Science and Technology Facilities Council

Deutsche Forschungsgemeinschaft

United States Department of Energy

European Research Council

Office of Science

Directorate for Mathematical & Physical Sciences

Ministerio de Educación Cultura y Deporte

Alfred P. Sloan Foundation

National Council for Scientific and Technological Development

Financiadora de Estudos e Projetos

National Aeronautics and Space Administration

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Ministry of Economy, Industry and Competitiveness

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

461

Issue

2

Pagination

19 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society. Copyright © 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC