Swinburne
Browse

Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping

Download (3.08 MB)
journal contribution
posted on 2024-07-10, 00:17 authored by Sophie Crommelinck, Rohan BennettRohan Bennett, Markus Gerke, Francesco Nex, Michael Ying Yang, George Vosselman
Unmanned Aerial Vehicles (UAVs) have emerged as a rapid, low-cost and flexible acquisition system that appears feasible for application in cadastral mapping: high-resolution imagery, acquired using UAVs, enables a new approach for defining property boundaries. However, UAV-derived data are arguably not exploited to its full potential: based on UAV data, cadastral boundaries are visually detected and manually digitized. A workflow that automatically extracts boundary features from UAV data could increase the pace of current mapping procedures. This review introduces a workflow considered applicable for automated boundary delineation from UAV data. This is done by reviewing approaches for feature extraction from various application fields and synthesizing these into a hypothetical generalized cadastral workflow. The workflow consists of preprocessing, image segmentation, line extraction, contour generation and postprocessing. The review lists example methods per workflow step—including a description, trialed implementation, and a list of case studies applying individual methods. Furthermore, accuracy assessment methods are outlined. Advantages and drawbacks of each approach are discussed in terms of their applicability on UAV data. This review can serve as a basis for future work on the implementation of most suitable methods in a UAV-based cadastral mapping workflow.

Funding

European Commission

History

Available versions

PDF (Published version)

ISSN

2072-4292

Journal title

Remote Sensing

Volume

8

Issue

8

Pagination

689-

Publisher

MDPI AG

Copyright statement

Copyright © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Language

eng

Usage metrics

    Publications

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC