Swinburne
Browse

Saturation Control of a Piezoelectric Actuator for Fast Settling-Time Performance

Download (307.84 kB)
journal contribution
posted on 2024-07-09, 14:37 authored by Jinchuan ZhengJinchuan Zheng, Minyue Fu
This brief studies fast tracking control of piezoelectric (PZT) actuators. Adverse effects associated with the PZT actuators typically include the nonlinear dynamics of hysteresis and saturation and the linear vibrational dynamics. To eliminate the loss of performance due to these effects, we propose a new control scheme for the PZT actuators. It consists of a combined feedforward/feedback compensator for hysteresis and resonance compensation and a nested switching controller (NSC) that optimizes a quadratic performance cost function involving the actuator saturation. The NSC not only can guarantee the system stability in the presence of saturation but also can improve the tracking speed by efficiently allocating the control efforts. The experimental results on an actual PZT nanopositioner show that the new control scheme outperforms the conventional control by more than 12% in settling time within the full PZT operational range and with nanoscale precision.

History

Available versions

PDF (Accepted manuscript)

ISSN

1063-6536

Journal title

IEEE Transactions on Control Systems Technology

Volume

21

Issue

1

Pagination

220-228

Publisher

IEEE

Copyright statement

Copyright © 2013 IEEE. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC