Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: Image formation
We propose a new type of total internal reflection fluorescence microscopy (TIRFM) called scanning TIRFM (STIRFM) that uses a focused ring-beam illumination and a high-numerical-aperture objective (NA = 1.65). The evanescent field produced by the STIRFM is focused laterally, producing a small excitation volume that can induce a nonlinear effect such as two-photon absorption. Experimental images of CdSe quantum dot nanocrystals and Rhodamine 6G-doped microbeads show that good lateral and axial resolutions are achieved with the current setup. The theoretical simulation of the focal spot produced in STIRFM geometry shows that the focused evanescent field is split into two peaks because of the depolarization effect of a high numerical-aperture objective lens. However, the point-spread function analysis of both one-photon and two-photon excitation cases shows that the detection of the focus-splitting effect is dependent on the detection pinhole size. The effect of pinhole size on image formation is theoretically investigated and confirmed experimentally with the nanocrystal images. © 2004 Optical Society of America.
History
Available versions
PDF (Published version)Publisher DOI
ISSN
1539-4522Journal title
Applied OpticsVolume
43Issue
5Article number
1063Pagination
8 ppPublisher
Optica Publishing GroupCopyright statement
Copyright © 2004 Optical Society of America. The published version is reproduced in accordance with the copyright policy of the publisher. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.43.001063. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Language
engUsage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC