Swinburne
Browse

Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

Download (612.7 kB)
journal contribution
posted on 2024-07-26, 14:37 authored by Slavko Bogdanov, Adam DellerAdam Deller, James C. A. Miller-Jones, Anne M. Archibald, Jason W. T. Hessels, Amruta Jaodand, Alessandro Patruno, Cees Bassa, Caroline D'Angelo
We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

Funding

Pinpointing the hosts of Fast Radio Bursts with UTMOST-2D

Australian Research Council

Find out more...

Feeding the faintest black holes: the nature of low-luminosity accretion

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1538-4357

Journal title

Astrophysical Journal

Volume

856

Issue

1

Article number

article no. 54

Pagination

1 p

Publisher

Institute of Physics Publishing

Copyright statement

Copyright © 2018 The American Astronomical Society. All rights reserved. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC