posted on 2024-07-10, 00:34authored bySimon CookSimon Cook, Amanda Skora, Mark J. Walker, Martina L. Sanderson-Smith, Jason D. McArthur
SK (streptokinase) is a secreted plasminogen activator and virulence factor of GAS (group A Streptococcus). Among GAS isolates, SK gene sequences are polymorphic and are grouped into two sequence clusters (cluster type-1 and cluster type-2) with cluster type-2 being further classified into subclusters (type-2a and type-2b). In the present study, we examined the role of bacterial and host-derived cofactors in SK-mediated plasminogen activation. All SK variants, apart from type-2b, can form an activator complex with Glu-Plg (Glu-plasminogen). Specific ligand-binding-induced conformational changes in Glu-Plg mediated by fibrinogen, PAM (plasminogen-binding group A streptococcal M protein), fibrinogen fragment D or fibrin, were required for type-2b SK to form a functional activator complex with Glu-Plg. In contrast with type-1 and type-2a SK, type-2b SK activator complexes were inhibited by α2-antiplasmin unless bound to fibrin or to the GAS cell-surface via PAM in combination with fibrinogen. Taken together, these data suggest that type-2b SK plasminogen activation may be restricted to specific microenvironments within the host such as fibrin deposits or the bacterial cell surface through the action of α2-antiplasmin. We conclude that phenotypic SK variation functionally underpins a pathogenic mechanism whereby SK variants differentially focus plasminogen activation, leading to specific niche adaption within the host.
Funding
The detection reliability of a single-bit sampling cross-correlator for detecting random Gaussian reflections