Swinburne
Browse

Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds

Download (1.71 MB)
journal contribution
posted on 2024-07-11, 09:07 authored by Martina Barbiero, Stefania Castelletto, Xiaosong Gan, Min Gu
Due to their exceptional optical and magnetic properties, negatively charged nitrogen-vacancy (NV -) centers in nanodiamonds (NDs) have been identified as an indispensable tool for imaging, sensing and quantum bit manipulation. The investigation of the emission behaviors of single NV - centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging. Here, we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV - centers confined within the diffraction-limited region. Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance (ODMR) frequency, we discovered that two collectively blinking NV - centers can be resolved. Furthermore, when the collective emitters possess the same ground state spin transition frequency, the proposed method allows the resolving of each single NV - center via an external magnetic field used to split the resonant dips. In spin manipulation, the three-level blinking dynamics provide the means to resolve two NV - centers separated by distances of 23 nm. The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with super-resolution techniques.

Funding

Australian Research Council

History

Available versions

PDF (Published version)

ISSN

2095-5545

Journal title

Light: Science and Applications

Volume

6

Issue

11

Article number

article no. e17085

Pagination

e17085-e17085

Publisher

Nature Publishing Group

Copyright statement

Copyright © 2017 The Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC