We investigate the dynamics of a damped harmonic oscillator with delayed feedback near zero eigenvalue singularity. We perform a linearized stability analysis and multiple bifurcations of the zero solution of the system near zero eigenvalue singularity. Taking the time delay as the bifurcation parameter, the presence of steady-state bifurcation, Bogdanov-Takens bifurcation, triple zero, and Hopf-zero singularities is demonstrated. In the case when the system has a simple zero eigenvalue, center manifold reduction and normal form theory are used to investigate the stability and the types of steady-state bifurcation. The stability of the zero solution of the system near the simple zero eigenvalue singularity is completely solved.
Funding
Wavelet approaches for solving nonlinear dynamic systems in process engineering