Swinburne
Browse

Stoner ferromagnetism of a strongly interacting Fermi gas in the quasirepulsive regime

Download (789.48 kB)
journal contribution
posted on 2024-07-11, 07:45 authored by Lianyi He, Xiaji LiuXiaji Liu, Xu-Guang Huang, Hui HuHui Hu
Recent advances in rapidly quenched ultracold atomic Fermi gases near a Feshbach resonance have brought about a number of interesting problems in the context of observing the long-sought Stoner ferromagnetic phase transition. The possibility of experimentally obtaining a 'quasirepulsive' regime in the upper branch of the energy spectrum due to the rapid quench is currently being debated, and the Stoner transition has mainly been investigated theoretically by using perturbation theory or at high polarization due to the limited theoretical approaches in the strongly repulsive regime. In this work, we present a nonperturbative theoretical approach to the quasirepulsive upper branch of a Fermi gas near a broad Feshbach resonance, and we determine the finite-temperature phase diagram for the Stoner instability. Our results agree well with the known quantum Monte Carlo simulations at zero temperature, and we recover the known virial expansion prediction at high temperature for arbitrary interaction strengths. At resonance, we find that the Stoner transition temperature becomes of the order of the Fermi temperature, around which the molecule formation rate becomes vanishingly small. This suggests a feasible way to observe Stoner ferromagnetism in the nondegenerate temperature regime.

Funding

ARC | FT130100815

ARC | DP140103231

ARC | FT140100003

ARC | DP140100637

Spin-orbit coupled quantum gases: understanding new generation materials with topological order : Australian Research Council (ARC) | DP140103231

Imbalanced superfluidity with cold atoms: a new way to understand unconventional superconductors and stellar superfluids : Australian Research Council (ARC) | FT130100815

Strongly repulsive ultracold atomic gases as a resource for quantum simulation : Australian Research Council (ARC) | DP140100637

Finding the lost particle: Majorana fermions in ultracold atoms : Australian Research Council (ARC) | FT140100003

History

Available versions

PDF (Published version)

ISSN

2469-9926

Journal title

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

93

Issue

6

Article number

article no. 063629

Pagination

063629-

Publisher

American Physical Society

Copyright statement

Copyright © 2016 American Physical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC