Swinburne
Browse

Superfluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit-coupled Fulde-Ferrell superfluid

Download (1.54 MB)
journal contribution
posted on 2024-07-11, 06:47 authored by Ye Cao, Xiaji LiuXiaji Liu, Lianyi He, Gui-Lu Long, Hui HuHui Hu
We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the textit{x}-direction, the tensor component along the textit{y}-direction ns,yy is generally larger than ns,xx in most parameter space. At zero temperature, there is always a discontinuity jump in ns,xx as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit coupling strength, interatomic interaction strength, in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1TF, where TF is the Fermi degenerate temperature. Therefore, their observation is within the reach of current experimental techniques in cold-atom laboratories.

Funding

ARC | FT140100003

ARC | FT130100815

ARC | DP140103231

ARC | DP140100637

Spin-orbit coupled quantum gases: understanding new generation materials with topological order : Australian Research Council (ARC) | DP140103231

Imbalanced superfluidity with cold atoms: a new way to understand unconventional superconductors and stellar superfluids : Australian Research Council (ARC) | FT130100815

Strongly repulsive ultracold atomic gases as a resource for quantum simulation : Australian Research Council (ARC) | DP140100637

Finding the lost particle: Majorana fermions in ultracold atoms : Australian Research Council (ARC) | FT140100003

History

Available versions

Published version

ISSN

1050-2947

Journal title

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

91

Issue

2

Article number

article no. 023609

Pagination

023609-

Publisher

American Physical Society

Copyright statement

Copyright © 2015 American Physical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC