posted on 2024-08-06, 09:51authored byJay Strader, Anil C. Seth, Duncan ForbesDuncan Forbes, Giuseppina Fabbiano, Aaron J. Romanowsky, Jean BrodieJean Brodie, Charlie Conroy, Nelson Caldwell, Vincenzo Pota, Christopher Usher, Jacob A. Arnold
We report the discovery of a remarkable ultra-compact dwarf galaxy around the massive Virgo elliptical galaxy NGC 4649 (M60), which we term M60-UCD1. With a dynamical mass of 2.0 x 10^8 M_sun but a half-light radius of only ~ 24 pc, M60-UCD1 is more massive than any ultra-compact dwarfs of comparable size, and is arguably the densest galaxy known in the local universe. It has a two-component structure well-fit by a sum of Sersic functions, with an elliptical, compact (r_h=14 pc; n ~ 3.3) inner component and a round, exponential, extended (r_h=49 pc) outer component. Chandra data reveal a variable central X-ray source with L_X ~ 10^38 erg/s that could be an active galactic nucleus associated with a massive black hole or a low-mass X-ray binary. Analysis of optical spectroscopy shows the object to be old (~> 10 Gyr) and of solar metallicity, with elevated [Mg/Fe] and strongly enhanced [N/Fe] that indicates light element self-enrichment; such self-enrichment may be generically present in dense stellar systems. The velocity dispersion (~ 70 km/s) and resulting dynamical mass-to-light ratio (M/L_V=4.9 +/- 0.7) are consistent with---but slightly higher than---expectations for an old, metal-rich stellar population with a Kroupa initial mass function. The presence of a massive black hole or a mild increase in low-mass stars or stellar remnants is therefore also consistent with this M/L_V. The stellar density of the galaxy is so high that no dynamical signature of dark matter is expected. However, the properties of M60-UCD1 suggest an origin in the tidal stripping of a nucleated galaxy with M_B ~ -18 to -19.