Swinburne
Browse

Temperature effects on the ultrasonic separation of fat from natural whole milk

Download (736.37 kB)
journal contribution
posted on 2024-07-12, 13:25 authored by Thomas Leong, Pablo Juliano, Linda Johansson, Raymond Mawson, Sally McArthurSally McArthur, Richard ManassehRichard Manasseh
This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600 kHz (583 W/L) or 1 MHz (311 W/L) with a starting bulk temperature of 5, 25, or 40 °C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1 MHz for 5 min at 25 °C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5 ± 0.06% (w/v) fat initially, of −52.3 ± 2.3% (reduction to 1.6 ± 0.07% (w/v) fat) in the skimmed milk layer and 184.8 ± 33.2% (increase to 9.9 ± 1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5 g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5 ± 0.06 μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound.

Funding

ARC | LP110200499

History

Available versions

PDF (Accepted manuscript)

ISSN

1350-4177

Journal title

Ultrasonics Sonochemistry

Volume

21

Issue

6

Pagination

2092-2098

Publisher

Elsevier

Copyright statement

Copyright © 2014 Elsevier B.V. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC