Swinburne
Browse

The 2dF galaxy redshift survey: The environmental dependence of galaxy star formation rates near clusters

Download (503.33 kB)
journal contribution
posted on 2024-08-06, 10:49 authored by Ian Lewis, Michael Balogh, Roberto De Propris, Warrick CouchWarrick Couch, Richard Bower, Alison Offer, Joss Bland-Hawthorn, Ivan K. Baldry, Carlton Baugh, Terry Bridges, Russell Cannon, Shaun Cole, Matthew Colless, Chris Collins, Nicholas Cross, Gavin Dalton, Simon P. Driver, George Efstathiou, Richard S. Ellis, Carlos S. Frenk, Karl GlazebrookKarl Glazebrook, Edward Hawkins, Carole Jackson, Ofer Lahav, Stuart Lumsden, Steve Maddox, Darren Madgwick, Peder Norberg, John A. Peacock, Will Percival, Bruce A. Peterson, Will Sutherland, Keith Taylor
We have measured the equivalent width of the Ha emission line for 11 006 galaxies brighter than Mb, = -19 (ΩΛ = 0.7, Ωm = 0.3, H0 = 70 km s-1 Mpc-1) at 0.05 < z < 0.1 in the 2dF Galaxy Redshift Survey (2dFGRS), in the fields of 17 known galaxy clusters. The limited redshift range ensures that our results are insensitive to aperture bias, and to residuals from night sky emission lines. We use these measurements to trace μ*, the star formation rate normalized to L*, as a function of distance from the cluster centre, and local projected galaxy density. We find that the distribution of μ* steadily skews toward larger values with increasing distance from the cluster centre, converging to the field distribution at distances greater than ∼3 times the virial radius. A correlation between star formation rate and local projected density is also found, which is independent of cluster velocity dispersion and disappears at projected densities below ∼1 galaxy Mpc-2 (brighter than Mb, = -19). This characteristic scale corresponds approximately to the mean density at the cluster virial radius. The same correlation holds for galaxies more than two virial radii from the cluster centre. We conclude that environmental influences on galaxy properties are not restricted to cluster cores, but are effective in all groups where the density exceeds this critical value. The present-day abundance of such systems, and the strong evolution of this abundance, makes it likely that hierarchical growth of structure plays a significant role in decreasing the global average star formation rate. Finally, the low star formation rates well beyond the virialized cluster rule out severe physical processes, such as ram pressure stripping of disc gas, as being completely responsible for the variations in galaxy properties with environment.

History

Available versions

PDF (Accepted manuscript)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

334

Issue

3

Pagination

10 pp

Publisher

Wiley

Copyright statement

Copyright © 2002 RAS. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher. The definitive publication is available at www.interscience.wiley.com.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC