Swinburne
Browse

The Murchison Widefield Array: design overview

Download (1.48 MB)
journal contribution
posted on 2024-08-06, 12:35 authored by C. J. Lonsdale, R. J. Cappallo, M. F. Morales, F. H. Briggs, L. Benkevitch, J. D. Bowman, J. D. Bunton, S. Burns, B. E. Corey, L. deSouza, S. S. Doeleman, M. Derome, A. Deshpande, M. R. Gopala, L. J. Greenhill, D. E. Herne, J. N. Hewitt, P. A. Kamini, J. C. Kasper, B. B. Kincaid, J. Kocz, E. Kowald, E. Kratzenberg, D. Kumar, M. J. Lynch, S. Madhavi, M. Matejek, D. A. Mitchell, E. Morgan, D. Oberoi, S. Ord, J. Pathikulangara, T. Prabu, A. Rogers, A. Roshi, J. E. Salah, R. J. Sault, N. U. Shankar, K. S. Srivani, J. Stevens, S. Tingay, A. Vaccarella, M. Waterson, R. B. Wayth, R. L. Webster, A. R. Whitney, Andrew Williams, C. Williams
The Murchison Widefield Array is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations but is initially focused on three key science projects: detection and characterization of three-dimensional brightness temperature fluctuations in the 21 cm line of neutral hydrogen during the epoch of reionization (EoR) at redshifts from six to ten; solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources; and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broadband active dipoles, arranged into 512 ldquotilesrdquo comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5 km in diameter, with a small number of outliers extending to 3 km. All tile-tile baselines are correlated in custom field-programmable gate array based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment, allowing full exploitation of the instrumental capabilities.

Funding

Mileura Widefield Array: A New Low Frequency Telescope

Australian Research Council

Find out more...

MIRA Widefield Array: a new low frequency telescope

Australian Research Council

Find out more...

Atomic Hydrogen through Cosmic Time: Steps to the Square Kilometre Array

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

0018-9219

Journal title

IEEE

Volume

97

Issue

8

Pagination

9 pp

Publisher

IEEE

Copyright statement

Copyright © 2009 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC