Swinburne
Browse

The NuSTAR view of the non-thermal emission from PSR J0437-4715

Download (1.93 MB)
journal contribution
posted on 2024-08-06, 10:42 authored by S. Guillot, V. M. Kaspi, R. F. Archibald, M. Bachetti, Christopher FlynnChristopher Flynn, F. Jankowski, Matthew BailesMatthew Bailes, S. Boggs, F. E. Christensen, W. W. Craig, C. A. Hailey, F. A. Harrison, D. Stern, W. W. Zhang
We present a hard X-ray Nuclear Spectroscopic Telescope Array (NuSTAR) observation of PSR J0437-4715, the nearest millisecond pulsar. The known pulsations at the apparent pulse period ~5.76ms are observed with a significance of 3.7σ, at energies up to 20keV above which the NuSTAR background dominates. We measure a photon index Γ = 1.50 ± 0.25 (90 per cent confidence) for the power-law fit to the non-thermal emission. It had been shown that spectral models with two or three thermal components fit the XMM-Newton spectrum of PSR J0437-4715, depending on the slope of the power-law component, and the amount of absorption of soft X-rays. The new constraint on the high-energy emission provided by NuSTAR removes ambiguities regarding the thermal components of the emission below 3 keV. We performed a simultaneous spectral analysis of the XMM-Newton and NuSTAR data to confirm that three thermal components and a power law are required to fit the 0.3-20 keV emission of PSR J0437-4715. Adding a ROSAT-PSPC spectrum further confirmed this result and allowed us to better constrain the temperatures of the three thermal components. A phase-resolved analysis of the NuSTAR data revealed no significant change in the photon index of the high-energy emission. This NuSTAR observation provides further impetus for future observations with the NICER mission (Neutron Star Interior Composition Explorer) whose sensitivity will provide much stricter constraints on the equation of state of nuclear matter by combining model fits to the pulsar's phase-folded light curve with the pulsar's well-defined mass and distance from radio timing observations.

Funding

CE110001020:ARC

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

463

Issue

3

Pagination

10 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC