Swinburne
Browse
- No file added yet -

The SAMI galaxy survey: Bayesian inference for gas disc kinematics using a hierarchical Gaussian mixture model

Download (3.4 MB)
journal contribution
posted on 2024-08-06, 12:00 authored by Mathew R. Varidel, Scott M. Croom, Geraint F. Lewis, Brendon J. Brewer, Enrico M. Di Teodoro, Joss Bland-Hawthorn, Julia J. Bryant, Christoph Federrath, Caroline Foster, Karl GlazebrookKarl Glazebrook, Michael Goodwin, Brent Groves, Andrew M. Hopkins, Jon S. Lawrence, Ángel R. López-Sánchez, Anne M. Medling, Matt S. Owers, Samuel N. Richards, Richard Scalzo, Nicholas Scott, Sarah Sweet, Dan S. Taranu, Jesse Van De Sande
We present a novel Bayesian method, referred to as BLOBBY3D, to infer gas kinematics that mitigates the effects of beam smearing for observations using integral field spectroscopy. The method is robust for regularly rotating galaxies despite substructure in the gas distribution. Modelling the gas substructure within the disc is achieved by using a hierarchical Gaussian mixture model. To account for beam smearing effects, we construct a modelled cube that is then convolved per wavelength slice by the seeing, before calculating the likelihood function. We show that our method can model complex gas substructure including clumps and spiral arms. We also show that kinematic asymmetries can be observed after beam smearing for regularly rotating galaxies with asymmetries only introduced in the spatial distribution of the gas. We present findings for our method applied to a sample of 20 star-forming galaxies from the SAMI Galaxy Survey. We estimate the global H α gas velocity dispersion for our sample to be in the range σ¯v ∼[7, 30] km s−1. The relative difference between our approach and estimates using the single Gaussian component fits per spaxel is σ¯v/σ¯v = −0.29 ± 0.18 for the H α flux-weighted mean velocity dispersion.

Funding

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Australian Research Council

Find out more...

CE110001020:ARC

The Great Escape: The Gaseous Outflow from the Centre of the Milky Way

Australian Research Council

Find out more...

How do galaxies get their gas? This project aims to build new understanding about the fundamental physics behind how galaxies get their gas

Australian Research Council

Find out more...

FIRE-DRIVE: Feedback in Realistic Environments to DRIVE turbulence

Australian Research Council

Find out more...

The formation of the first stars in the universe

Australian Research Council

Find out more...

Seeing the Feeding of Galaxies

Australian Research Council

Find out more...

The impact of impact: what stops star formation in cluster galaxies? This project aims to explain the fundamental differences observed in the star forming properties of galaxies in high and low density environments

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

485

Issue

3

Pagination

20 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. Copyright © 2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC