Swinburne
Browse

The SAMI galaxy survey: Exploring the gas-phase mass–metallicity relation

Download (7.44 MB)
journal contribution
posted on 2024-08-06, 11:58 authored by S. F. Sánchez, J. K. Barrera-Ballesteros, C. López-Cobá, S. Brough, J. J. Bryant, J. Bland-Hawthorn, S. M. Croom, J. Van De Sande, L. Cortese, M. Goodwin, J. S. Lawrence, A. R. López-Sánchez, Sarah Sweet, M. S. Owers, S. N. Richards, C. J. Walcher
We present a detailed exploration of the stellar mass versus gas-phase metallicity relation (MZR) using integral field spectroscopy data obtained from similar to 1000 galaxies observed by the SAMI galaxy survey. 'These spatially resolved spectroscopic data allow us to determine the metallicity within the same physical scale (R-eff) for different calibrators. The shape of the MZ relations is very similar between the different calibrators, while there are large offsets in the absolute values of the abundances. We confirm our previous results derived using the spatially resolved data provided by the CALIFA and MaNGA surveys: (1) we do not find any significant secondary relation of the MZR with either the star formation rate (SFR) or the specific SFR (SFR/M.) for any of the calibrators used in this study, based on the analysis of the individual residuals; (2) if there is a dependence with the SFR, it is weaker than the reported one (r(c)similar to -0.3), it is confined to the low-mass regime (M-* < 10(9) M-circle dot) or high-SFR regimes, and it does not produce any significant improvement in the description of the average population of galaxies. The aparent disagreement with published results based on single-fibre spectroscopic data could be due to (i) the interpretation of the secondary relation itself; (ii) the lower number of objects sampled at the low-mass regime by the current study; or (iii) the presence of extreme star-forming galaxies that drive the secondary relation in previous results.

Funding

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

484

Issue

3

Pagination

28 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Copyright © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC