Swinburne
Browse

The SLUGGS survey*: The globular cluster systems of three early-type galaxies using wide-field imaging

Download (2.18 MB)
journal contribution
posted on 2024-07-26, 13:54 authored by S. S. Kartha, Duncan ForbesDuncan Forbes, L. R. Spitler, A. J. Romanowsky, J. A. Arnold, Jean BrodieJean Brodie
We present the results from a wide-field imaging study of globular cluster (GC) systems in three early-type galaxies. Combinations of Subaru/Suprime-Cam, Canada-France-Hawaii Telescope/MegaCam and Hubble Space Telescope/Wide Field Planetary Camera 2/Advanced Camera for Surveys data were used to determine the GC system properties of three highly flattened galaxies NGC 720, NGC 1023 and NGC 2768. This work is the first investigation of the GC system in NGC 720 and NGC 2768 to very large galactocentric radius (~100 kpc). The three galaxies have clear blue and red GC subpopulations. The radial surface densities of the GC systems are fitted with Sersic profiles, and detected out to 15, 8 and 10 galaxy effective radii, respectively. The total number of GCs and specific frequency are determined for each GC system. The ellipticity of the red subpopulation is in better agreement with the host galaxy properties than is the blue subpopulation, supporting the traditional view that metal-rich GCs are closely associated with the bulk of their host galaxies' field stars, while metal-poor GCs reflect a distinct stellar halo. With the addition of another 37 literature studied galaxies, we present a new correlation of GC system extent with host galaxy effective radius. We find a dependence of the relative fraction of blue to red GCs on host galaxy environmental density for lenticular galaxies (but not for elliptical or spiral galaxies). We propose that tidal interactions between galaxies in cluster environments might be the reason behind the observed trend for lenticular galaxies.

Funding

Revealing how elliptical galaxies formed

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

437

Issue

1

Pagination

19 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2013 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Notes

Note Erratum published at http://doi.org/10.1093/mnras/stw112

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC