Swinburne
Browse
- No file added yet -

The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

Download (543.56 kB)
journal contribution
posted on 2024-08-06, 09:25 authored by Rachel Mandelbaum, Chris BlakeChris Blake, Sarah Bridle, Filipe B. Abdalla, Sarah Brough, Matthew Colless, Warrick CouchWarrick Couch, Scott Croom, Tamara Davis, Michael J. Drinkwater, Karl Forster, Karl GlazebrookKarl Glazebrook, Ben Jelliffe, Russell J. Jurek, I-hui Li, Barry Madore, Chris Martin, Kevin Pimbblet, Gregory B. Poole, Michael Pracy, Rob Sharp, Emily Wisnioski, David Woods, Ted Wyder
Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]

Funding

Science and Technology Facilities Council

Research England

Royal Society

Australian Research Council

United States Department of Energy

National Aeronautics and Space Administration

National Science Foundation

Alfred P. Sloan Foundation

Chinese Academy of Sciences

History

Available versions

PDF (Accepted manuscript)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

410

Issue

2

Pagination

15 pp

Publisher

Wiley

Copyright statement

Copyright © 2010 The authors. Journal compilation copyright © 2010 Royal Astronomical Society. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher. The definitive publication is available at www.interscience.wiley.com.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC