Swinburne
Browse

The effect of dielectric spacer layer thickness on surface plasmon enhanced solar cells for front and rear side depositions

Download (2.88 MB)
journal contribution
posted on 2024-07-13, 07:06 authored by S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green
The excitation of surface plasmons on metallic nanoparticles has the potential to significantly improve the performance of solar cells, in particular thin-film structures. In this article, we investigate the effect of the dielectric spacer layer thickness on the photocurrent enhancement of 2 μm thick, thin-film poly-Si on glass solar cells, due to random arrays of self assembled Ag nanoparticles deposited on the front or the rear of the cells. We report a strong asymmetry in the external quantum efficiency (EQE) of the cell for front and rear located particles for different spacer thicknesses, which is attributed to differences in the scattering behavior of the nanoparticles. We find that for random arrays, with spectrally broad scattering resonances, the strength of the driving field and the coupling efficiency are more important for light trapping than the resonance wavelength. For particles located on the front of the cells it is desirable to have a thin dielectric spacer layer to enhance the scattering from the Ag nanoparticles. Additionally, light trapping provided by the random sized particles on the front can overcome suppression of light transmitted in the visible wavelength regions for thin layers of Si, to result in overall EQE enhancements. However, for particles deposited on the rear it is more beneficial to have the particles as close to the Si substrate as possible to increase both the scattering and the coupling efficiency.

History

Available versions

PDF (Published version)

ISSN

0021-8979

Journal title

Journal of Applied Physics

Volume

109

Issue

7

Article number

article no. 073105

Publisher

American Institute of Physics

Copyright statement

Copyright © 2011 American Institute of Physics. The published version is reproduced with the permission of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC