Swinburne
Browse

The environments and clustering properties of 2dF Galaxy Redshift Survey selected starburst galaxies

Download (1.3 MB)
journal contribution
posted on 2024-07-26, 14:23 authored by Matt S. Owers, Chris BlakeChris Blake, Warrick CouchWarrick Couch, Michael B. Pracy, Kenji Bekki
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5-15Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ~30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20-30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.

Funding

Department of Industry, Science and Resources

Australian Research Council

History

Available versions

PDF (Accepted manuscript)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

381

Issue

2

Pagination

16 pp

Publisher

Wiley

Copyright statement

Copyright © 2007 The authors. Journal compilation copyright policy of the publisher. The definitive publication is available at www.interscience.wiley.com.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC