Swinburne
Browse

The hybrid solution for the fundamental plane

Download (3.49 MB)
journal contribution
posted on 2024-08-06, 09:22 authored by M. D'Onofrio, G. Fasano, A. Moretti, P. Marziani, D. Bindoni, J. Fritz, J. Varela, D. Bettoni, A. Cava, B. Poggianti, M. Gullieuszik, P. Kjærgaard, M. Moles, B. Vulcani, A. Omizzolo, Warrick CouchWarrick Couch, A. Dressler
By exploiting the data base of early-type galaxy (ETG) members of the WINGS survey of nearby clusters, we address here the long debated question of the origin and shape of the Fundamental Plane (FP). Our data suggest that different physical mechanisms concur in shaping and 'tilting' the FP with respect to the virial plane (VP) expectation. In particular, a 'hybrid solution' in which the structure of galaxies and their stellar population are the main contributors to the FP tilt seems to be favoured. We find that the bulk of the tilt should be attributed to structural non-homology, while stellar population effects play an important but less crucial role. In addition, our data indicate that the differential FP tilt between the V and K band is due to a sort of entanglement between structural and stellar population effects, for which the inward steepening of colour profiles (V - K) tends to increase at increasing the stellar mass of ETGs. The same kind of analysis applied to the ATLAS3D and Sloan Digital Sky Survey (SDSS) data in common with WINGS (WSDSS throughout the paper) confirms our results, the only remarkable difference being the less important role that our data attribute to the stellar mass-to-light-ratio (stellar populations) in determining the FP tilt. The ATLAS3D data also suggest that the FP tilt depends as well on the dark matter (DM) fraction and on the rotational contribution to the kinetic energy (Vrot/σ), thus again pointing towards the above-mentioned 'hybrid solution'. We show that the global properties of the FP, i.e. its tilt and tightness, can be understood in terms of the underlying correlation among mass, structure and stellar population of ETGs, for which, at increasing the stellar mass, ETGs become (on average) 'older' and more centrally concentrated. Finally, we show that a Malmquist-like selection effect may mimic a differential evolution of the mass-to-light ratio for galaxies of different masses. This should be taken into account in the studies investigating the amount of the so-called 'downsizing' phenomenon.

Funding

Ministry of Education, Universities and Research

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

435

Issue

1

Pagination

18 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2013 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. The published version is reproduced in accordance with the copyright policy of the journal.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC