Swinburne
Browse

The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations

Download (5.27 MB)
journal contribution
posted on 2024-08-06, 11:12 authored by Viraj Pandya, Ryan Brennan, Rachel S. Somerville, Ena Choi, Guillermo Barro, Stijn Wuyts, Edward TaylorEdward Taylor, Peter Behroozi, Allison Kirkpatrick, Sandra M. Faber, Joel Primack, David C. Koo, Daniel H. McIntosh, Dale Kocevski, Eric F. Bell, Avishai Dekel, Jerome J. Fang, Henry C. Ferguson, Norman Grogin, Anton M. Koekemoer, Yu Lu, Kameswara Mantha, Bahram Mobasher, Jeffrey Newman, Camilla Pacifici, Casey Papovich, Arjen van der Wel, Hassen M. Yesuf
We explore observational and theoretical constraints on how galaxies might transition between the 'star-forming main sequence' (SFMS) and varying 'degrees of quiescence' out to z = 3. Our analysis is focused on galaxies with stellar mass M-* > 10(10) M-circle dot, and is enabled by GAMA and CANDELS observations, a semi-analytic model (SAM) of galaxy formation, and a cosmological hydrodynamical 'zoom in' simulation with momentum-driven AGN feedback. In both the observations and the SAM, transition galaxies tend to have intermediate Sersic indices, half-light radii, and surface stellar mass densities compared to star-forming and quiescent galaxies out to z = 3. We place an observational upper limit on the average population transition time-scale as a function of redshift, finding that the average high-redshift galaxy is on a 'fast track' for quenching whereas the average low-redshift galaxy is on a 'slow track' for quenching. We qualitatively identify four physical origin scenarios for transition galaxies in the SAM: oscillations on the SFMS, slow quenching, fast quenching, and rejuvenation. Quenching time-scales in both the SAM and the hydrodynamical simulation are not fast enough to reproduce the quiescent population that we observe at z similar to 3. In the SAM, we do not find a clear-cut morphological dependence of quenching time-scales, but we do predict that the mean stellar ages, cold gas fractions, SMBH (supermassive black hole) masses and halo masses of transition galaxies tend to be intermediate relative to those of star-forming and quiescent galaxies at z < 3.

Funding

National Aeronautics and Space Administration

Simons Foundation

Directorate for Mathematical & Physical Sciences

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

472

Issue

2

Pagination

30 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Copyright © 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC