Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid densities. The thermodynamic criteria for maxima/minima in the isochoric and isobaric heat capacities are identified and the simulation results are also compared with calculations from Lennard-Jones equations of state. The Johnson [Mol. Phys. 78, 591 (1993)] equation of state can be used to reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential. Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones potentials support the existence of Cp minima at supercritical conditions. The values of n and m also have a significant influence on many other thermodynamic properties.