Swinburne
Browse
- No file added yet -

Thewigglez dark energy survey: Star formation in uv-luminous galaxies from their luminosity functions

Download (3.82 MB)
journal contribution
posted on 2024-08-06, 09:24 authored by R. J. Jurek, M. J. Drinkwater, K. Pimbblet, Karl GlazebrookKarl Glazebrook, Chris BlakeChris Blake, S. Brough, M. Colless, C. Contreras, Warrick CouchWarrick Couch, S. Croom, Darren CrotonDarren Croton, T. M. Davis, K. Forster, D. Gilbank, M. Gladders, B. Jelliffe, I.-h. Li, B. Madore, D. C. Martin, G. B. Poole, M. Pracy, R. Sharp, E. Wisnioski, D. Woods, T. K. Wyder, H. K. C. Yee
We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. Our sample consists of 39 996 NUV < 22.8 emission line galaxies in the redshift range 0.1 < z < 0.9. This sample selects galaxies with high star formation rates: at 0.6 < z<0.9 the median star formation rate is at the upper 95th percentile of optically selected (r < 22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z<0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample (-21.0>MNUV > -22.5) evolve very rapidly with a number density declining as (1 + z)5±1 from redshift z = 0.9 to 0.6. These starburst galaxies (MNUV < -21 is approximately a star formation rate of 30M⊙ yr-1) contribute about 1 per cent of cosmic star formation over the redshift range z = 0.6-0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1 + z)4±1. Such a rapid evolution implies that the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in δz = 0.05 redshift intervals spanning 0.1 < z < 0.9, and provide analytic fits to the results. Our measurements of the luminosity function over this redshift range probe further into the bright end (1-2 mag further) than previous measurements, e.g. Arnouts et al., Budav'ari et al. and Treyer et al., due to our much larger sample size and sampled volume. At all redshifts z > 0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (MNUV < -22) galaxies. These luminosity functions can be used to create a radial selection function for theWiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco, Silk & Bouwens, and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.

Funding

The Last 8 Billion Years of Cosmic Evolution

Australian Research Council

Find out more...

The fundamental physics governing the formation of cosmic structure

Australian Research Council

Find out more...

The formation and structure of distant galaxies

Australian Research Council

Find out more...

The Australian Virtual Observatory

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

434

Issue

1

Pagination

24 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2013 The authors Published by Oxford University Press on behalf of the Royal Astronomical Society. The published version is reproduced in accordance with the copyright policy of the journal.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC