The effect of three-body interactions on the solid-liquid phase boundaries of argon, krypton, and xenon is investigated via a novel technique that combines both nonequilibrium and equilibrium molecular dynamics. The simulations involve the evaluation of two- and three-body forces using accurate two-body and three-body intermolecular potentials. The effect of three-body interactions is to substantially increase the coexistence pressure and to lower the densities of liquid and solid phases. Comparison with experiment indicates that three-body interactions are required to accurately determine the total pressure. In contrast to vapor-liquid phase equilibria, the relative contribution of three-body interactions to the freezing pressure exceeds the contribution of two-body interactions at all temperatures.