posted on 2024-07-13, 06:09authored byLing Fu, Ankur Jain, Charles G. Cranfield, Huikai Xie, Min Gu
The development of miniaturized nonlinear optical microscopy or endoscopy is essential to complement the current imaging modalities for diagnosis and monitoring of cancers. We report on a nonlinear optical endoscope based on a double-clad photonic crystal fiber and a two-dimensional (2-D) microelectromechanical system mirror, enabling the three-dimensional (3-D) nonlinear optical imaging through in vitro gastrointestinal tract tissue and human breast cancer tissue with a penetration depth of approximately 100 μm and axial resolution of 10 μm. The 3-D high-resolution and high-sensitive imaging ability of the nonlinear optical endoscope facilitates the visualization of 3-D morphologic and cell nuclei arrangement within tissue, and therefore will be important for histopathologic interpretation without the need of tissue excision.