Swinburne
Browse

Three dimensional nanoparticle trapping enhanced by surface plasmon resonance

Download (946.67 kB)
journal contribution
posted on 2024-07-09, 15:03 authored by Jingzhi Wu, Xiaosong GanXiaosong Gan
We demonstrate a three dimensional nanoparticle trapping approach aided by the surface plasmon resonance of metallic nanostructures. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement, which enables confinement of nanoparticles in the three-dimensional space. Numerical simulations indicate that the plasmonic structure provides approximately two orders of magnitude stronger optical forces for trapping nanoparticles, compared with that without nanostructures. The study of thermal effect of the plasmonic structure shows that the impact of the thermal force is significant, which may determine the outcome of the nanoparticle trapping.

History

Available versions

PDF (Published version)

ISSN

1094-4087

Journal title

Opt. Express

Volume

18

Issue

26

Pagination

27619-27626

Publisher

Optical Society of America

Copyright statement

Copyright © 2010 Optical Society of America. The published version is reproduced in accordance with the copyright policy of the publisher. The accepted manuscript was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.18.001255. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC