Swinburne
Browse

Topological Fulde-Ferrell superfluid in spin-orbit-coupled atomic Fermi gases

Download (359.5 kB)
journal contribution
posted on 2024-07-11, 07:29 authored by Xiaji LiuXiaji Liu, Hui HuHui Hu
We theoretically predict a topological matter-topological inhomogeneous Fulde-Ferrell superfluid-in one-dimensional atomic Fermi gases with equal Rashba and Dresselhaus spin-orbit coupling near s-wave Feshbach resonances. The realization of such a spin-orbit-coupled Fermi system has already been demonstrated recently by using a two-photon Raman process and the extra one-dimensional confinement is easy to achieve using a tight two-dimensional optical lattice. The topological Fulde-Ferrell superfluid phase is characterized by a nonzero center-of-mass momentum and a nontrivial Berry phase. By tuning the Rabi frequency and the detuning of Raman laser beams, we show that such an exotic topological phase occupies a significant part of parameter space and therefore it could be easily observed experimentally, by using, for example, momentum-resolved and spatially resolved radio-frequency spectroscopy.

Funding

ARC | DP0984637

ARC | DP0984522

Ultracold atomic Fermi gases in the strongly interacting regime: A new frontier of quantum many-body physics : Australian Research Council | DP0984522

Imbalanced superfluidity: The quantum mystery that defies solution : Australian Research Council (ARC) | DP0984637

History

Available versions

PDF (Published version)

ISSN

1050-2947

Journal title

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

88

Issue

2

Article number

article no. 023622

Pagination

023622-

Publisher

American Physical Society

Copyright statement

Copyright © 2013 American Physical Society. the published version is reproduced with the permission of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC