Swinburne
Browse

Tracking Cluster Debris (TraCD) - I. Dissolution of clusters and searching for the solar cradle

Download (4.3 MB)
journal contribution
posted on 2024-07-26, 13:58 authored by G. R. I. Moyano Loyola, Christopher FlynnChristopher Flynn, Jarrod HurleyJarrod Hurley, B. K. Gibson
The capability to reconstruct dissolved stellar systems in dynamical and chemical space is a key factor in improving our understanding of the evolution of the Milky Way. Here we concentrate on the dynamical aspect and given that a significant portion of the stars in the Milky Way have been born in stellar associations or clusters that have lived a few Myr up to several Gyr, we further restrict our attention to the evolution of star clusters. We have carried out our simulations in two steps: (1) we create a simulation of dissolution and mixing processes which yields a close fit to the present-day Milky Way dynamics and (2) we have evolved three sets of stellar clusters with masses of 400, 1000 and 15 000 M⊙ to dissolution. The birth location of these sets was 4, 6, 8 and 10 kpc for the 400 and 1000 M⊙ clusters and 4, 6, 8, 10 and 12 kpc for the 15 000 M⊙. We have focused our efforts on studying the state of the escapers from these clusters after 4.5 Gyr of evolution with particular attention to stars that reach the solar annulus, i.e. 7.5 ≤ Rgc ≤ 8.5 kpc. We give results for solar twins and siblings over a wide range of radii and cluster masses for two dissolution mechanisms. From kinematics alone, we conclude that the Sun was ∼50 per cent more likely to have been born near its current Galactocentric radius, rather than have migrated (radially) ∼2 kpc since birth. We conclude our analysis by calculating magnitudes and colours of our single stars for comparison with the samples that the Gaia, Gaia-ESO and GALAH-AAO surveys will obtain. In terms of reconstructing dissolved star clusters, we find that on short time-scales we cannot rely on kinematic evolution alone and thus it will be necessary to extend our study to include information on chemical space.

Funding

Science and Technology Facilities Council

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

449

Issue

4

Pagination

14 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2014. This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2014 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC