Swinburne
Browse

Ultrafast optical multidimensional spectroscopy without interferometry

Download (981.76 kB)
journal contribution
posted on 2024-07-26, 14:07 authored by Jeffrey DavisJeffrey Davis, T. R. Calhoun, K. A. Nugent, H. M. Quiney
We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic processes in physics, chemistry, and biology. The versatility and number of available techniques are, however, significantly limited by the requirement that the detection be interferometric. Many of these techniques are closely related to the vast range of multidimensional NMR spectroscopies, which revolutionized analytical chemistry more than 30 years ago. We focus here on the specific case of two-color multidimensional spectroscopy (analogous to heteronuclear NMR) and discuss the details of an iterative algorithm that recovers the relative phase relationships required to perform the Fourier transformation and find the unique solution for the 2D spectrum. A detailed guide is provided that describes the practical implementation of such algorithms. The effectiveness and accuracy of the phase retrieval process are assessed for simulated one- and two-color experiments. It is also compared with one-color experimental data for which the target phase information has been obtained independently by interferometry. In all the cases, the present algorithm yields results that compare well with the solutions obtained by other means. There are, however, some limitations and potential pitfalls that are identified and discussed. We conclude with a discussion of the potential applications and further advances that may be possible by adopting iterative phase retrieval algorithms of the type discussed here.

History

Available versions

PDF (Published version)

ISSN

0021-9606

Journal title

The Journal of Chemical Physics

Volume

134

Issue

2

Article number

paper no. 024504

Pagination

024504-

Publisher

American Institute of Physics

Copyright statement

Copyright © 2011 American Institute of Physics. The published version is reproduced with the permission of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC