Swinburne
Browse

Understanding Dyslexia Through Personalized Large-Scale Computational Models

Download (1.6 MB)
journal contribution
posted on 2024-07-11, 12:34 authored by Conrad Perry, Marco Zorzi, Johannes C. Ziegler
Learning to read is foundational for literacy development, yet many children in primary school fail to become efficient readers despite normal intelligence and schooling. This condition, referred to as developmental dyslexia, has been hypothesized to occur because of deficits in vision, attention, auditory and temporal processes, and phonology and language. Here, we used a developmentally plausible computational model of reading acquisition to investigate how the core deficits of dyslexia determined individual learning outcomes for 622 children (388 with dyslexia). We found that individual learning trajectories could be simulated on the basis of three component skills related to orthography, phonology, and vocabulary. In contrast, single-deficit models captured the means but not the distribution of reading scores, and a model with noise added to all representations could not even capture the means. These results show that heterogeneity and individual differences in dyslexia profiles can be simulated only with a personalized computational model that allows for multiple deficits.

Funding

Using large scale modelling to understand reading development and dyslexia

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1467-9280

Journal title

Psychological Science

Volume

30

Issue

3

Pagination

9 pp

Publisher

SAGE Publications

Copyright statement

Copyright © 2019 The Author(s). This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC