Quantum virial expansion provides an ideal tool to investigate the high-temperature properties of a strongly correlated Fermi gas. Here, we construct the virial expansion in the presence of spin-population imbalance. Up to the third order, we calculate the high-temperature free energy of a unitary Fermi gas as a function of spin imbalance, with infinitely large attractive or repulsive interactions. In the latter repulsive case, we show that there is no itinerant ferromagnetism when quantum virial expansion is applicable. We therefore estimate an upper bound for the ferromagnetic transition temperature Tc. For a harmonically trapped Fermi gas at unitarity, we find that (Tc)upper
Funding
ARC | DP0984522
ARC | DP0984637
Two-component ultracold fermions and molecular systems from BCS to BEC transit and cross-theoretical description of the physical characteristics of the region : National Natural Science Foundation of China | 10774190
Ultracold atomic Fermi gases in the strongly interacting regime: A new frontier of quantum many-body physics : Australian Research Council | DP0984522
Imbalanced superfluidity: The quantum mystery that defies solution : Australian Research Council (ARC) | DP0984637