posted on 2024-08-06, 10:45authored byG. Fasano, C. Marmo, J. Varela, MD'Onofrio, B. M. Poggianti, M. Moles, E. Pignatelli, D. Bettoni, P. Kjærgaard, L. Rizzi, Warrick CouchWarrick Couch, A. Dressler
This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters, with constraints on the redshift (0.04 < z < 0.07) and distance from the galactic plane (b ≥ 20 deg). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow the definition of a local, 'zero-point' reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multifiber, medium-resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using, respectively, the WFC@INT and WYFFOS@WHT in the northern hemisphere, and the WFI@MPG and 2dF@AAT in the southern hemisphere. In addition, a NIR (J, K) survey of ∼50 clusters and an Ha + U survey of some 10 clusters are presently ongoing with the WFCAM@UKIRT and WFC@INT, respectively, while a very-wide-field optical survey has also been programmed with OmegaCam@VST. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ∼0.025 mag, reaching completeness to V ∼ 23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7) Mpc and (0.7-1.7) kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to obtain a valuable description of the local properties of clusters and galaxies in clusters.