Swinburne
Browse

ZFIRE: The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift ∼2.2

Download (3.93 MB)
journal contribution
posted on 2024-08-06, 10:53 authored by Caroline M. S. Straatman, Karl GlazebrookKarl Glazebrook, Glenn KacprzakGlenn Kacprzak, Ivo LabbeIvo Labbe, Themiya NanayakkaraThemiya Nanayakkara, Leo Alcorn, Michael Cowley, Lisa J. Kewley, Lee R. Spitler, Kim-Vy H. Tran, Tiantian Yuan
Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey, we present the stellar mass TullyFisher relation at 2.0 < z < 2.5. The sample was drawn from a stellar-mass-limited, Ks-band-selected catalog from ZFOURGE over the CANDELS area in the COSMOS field. We model the shear of the Hα emission line to derive rotational velocities at 2.2 the scale radius of an exponential disk (V2.2). We correct for the blurring effect of a 2D point-spread function (PSF) and the fact that the MOSFIRE PSF is better approximated by a Moffat than a Gaussian, which is more typically assumed for natural seeing. We find for the Tully-Fisher relation at 2.0 < z < 2.5 that log V2.2 = (2.18 ± 0.051)+(0.193 ± 0.108)(logM/M -10) and infer an evolution of the zero-point of DM/M = -0.25 ± 0.16 dex or DM M = -0.39 ± 0.21 dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5, respectively. We also derive the alternative kinematic estimator S0.5, with a best-fit relation log S0.5 = (2.06 ± 0.032) + (0.211 ± 0.086) (logM M - 10), and infer an evolution of DM M = -0.45 ± 0.13 dex compared to z < 1.2 if we adopt a fixed slope. We investigate and review various systematics, such as PSF effects, projection effects, systematics related to stellar mass derivation, selection biases, and slope. We find that discrepancies between the various literature values are reduced when taking these into account. Our observations correspond well with the gradual evolution predicted by semianalytic models.

Funding

Simulating galaxy ecosystems

Australian Research Council

Find out more...

Mass assembly and galaxy evolution: measuring origins in deep time

Australian Research Council

Find out more...

Investigating Rosetta Stones of galaxy formation

Australian Research Council

Find out more...

The morphological evolution of galaxies over cosmic time

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1538-4357

Journal title

Astrophysical Journal

Volume

839

Issue

1

Article number

article no. 57

Pagination

1 p

Publisher

Institute of Physics Publishing, Inc.

Copyright statement

Copyright © 2017 The American Astronomical Society. All rights reserved. The published version is reproduced here in accordance with the copyright policy of the publisher and can be also be located at https://doi.org/10.3847/1538-4357/aa643e.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC