Swinburne
Browse

nIFTy cosmology: Comparison of galaxy formation models

Download (2.18 MB)
journal contribution
posted on 2024-08-06, 09:48 authored by Alexander Knebe, Frazer R. Pearce, Peter A. Thomas, Andrew Benson, Jeremy Blaizot, Richard Bower, Jorge Carretero, Francisco J. Castander, Andrea Cattaneo, Sofia A. Cora, Darren CrotonDarren Croton, Weiguang Cui, Daniel Cunnama, Gabriella De Lucia, Julien E. Devriendt, Pascal J. Elahi, Andreea Font, Fabio Fontanot, Juan Garcia-Bellido, Ignacio D. Gargiulo, Violeta Gonzalez-Perez, John Helly, Bruno Henriques, Michaela Hirschmann, Jaehyun Lee, Gary A. Mamon, Pierluigi Monaco, Julian Onions, Nelson D. Padilla, Chris Power, Arnau Pujol, Ramin A. Skibba, Rachel S. Somerville, Chaichalit Srisawat, Cristian A. Vega-Martínez, Sukyoung K. Yi
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper, we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to-halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the 'nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.

Funding

CE110001020:ARC

Observing the synthetic universe: revealing the dark cosmos with future telescopes

Australian Research Council

Find out more...

The Orbits and Interactions of Satellite Galaxies: A Fundamental Test of Cosmology

Australian Research Council

Find out more...

Monstrous Black Holes, Dead Stars and Accretion-Powered Feedback in Galaxy Formation

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

451

Issue

4

Pagination

30 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2015. This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2015 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC