posted on 2024-07-13, 02:46authored byDavid Gordon Giles Simpson
This thesis reports on several new and innovative instrumentation developments to solve some of the problems of brain activity monitoring, particularly SSVEP (Steady State Visual Evoked Potentials) studies. SSVEP systems generate suitable stimuli and record the resulting brain biopotentials from scalp electrodes. The instrumentation is configured as a 'Neuropsychiatric Workstation', supporting up to 136 scalp electrodes. Operating in the SSVEP mode, the Neuropsychiatric Workstation reported here significantly improves upon the previously reported spatial resolution and accuracy of maps related to the generated stimuli. These maps allows insights to be gained into the cognitive workings of the brain. A significant component of the work reported here covers the development of the multielectrode EEG measurement modules and the associated techniques for minimising interference and cross-talk. The techniques for synchronising recordings from all electrodes with the stimulus, interfacing to a host computer and real-time storage of the very large amounts of data generated to hard disk, are all reported. The SSVEP paradigm uses a sinusoidal-modulated visual stimuli. A novel linearised LED (light emitting diode) head-up display was developed, in addition to more conventional stimuli, such as the alternating checker-board display, all with sinusoidal modulation capability over a range of frequencies. The Neuropsychiatric Workstation described in thesis has been replicated several times and is in regular use at Brain Sciences Institute (BSI) at Swinburne University of Technology, and other collaborative research institutes.
History
Thesis type
Thesis (Masters by research)
Thesis note
Submitted in fulfillment of the requirements for the degree of Master of Applied Science, Swinburne University of Technology, 1998.