Swinburne
Browse

Laser assisted machining of high chromium white cast-iron

Download (1.55 MB)
thesis
posted on 2024-07-13, 05:00 authored by Kelly Armitage
Laser-assisted machining has been considered as an alternative for difficult-to-machine materials such as metallic alloys and ceramics. Machining of some materials such as high chromium alloys and high strength steels is still a delicate and challenging task. Conventional machines or computer numerical control (CNC) machines and cutting tools cannot adapt easily to such materials and induce very high costs for operations of rough machining or finishing. If laser-assisted machining can be implemented successfully for such materials, it will offer several advantages over the traditional methods including longer tool life, shorter machining time and reduced overall costs. This thesis presents the results of the research conducted on laser assisted machining of hard to wear materials used in making heavy duty mineral processing equipment for the mining industry. Experimental set up using a high power Nd:YAG laser beam attached to a lathe has been developed to machine these materials using cubic boron nitride (CBN) based cutting tools. The laser beam was positioned so that it was heating a point on the surface of the workpiece directly before it passed under the cutting tool. Cutting forces were measured during laser assisted machining and were compared to those measured during conventional machining. Results from the experiments show that with the right cutting parameters and laser beam position, laser assisted machining results in a reduction in cutting forces compared to conventional machining. A mathematical thermal model was used to predict temperatures within the workpiece at depths under the laser beam spot. The model was used to determine the effect of various cutting and laser parameters on the temperature profile within the workpiece. This study shows that laser assisted machining of hard to wear materials such as high chromium white cast iron shows potential as a possible economical alternative to conventional machining methods. Further research is needed before it can be introduced in industry as an alternative to conventional machining.

History

Thesis type

  • Thesis (Masters by research)

Thesis note

Submitted in fulfillment of the requirements for the degree of Master of Engineering by Research, Swinburne University of Technology, 2006.

Copyright statement

Copyright © 2006 Kelly Armitage.

Supervisors

Syed H. Masood

Language

eng

Usage metrics

    Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC